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Abstract: Background
Accurately identifying SNPs from bacterial sequencing data is an essential requirement
for using genomics to track transmission and predict important phenotypes such as
antimicrobial resistance. However, most previous performance evaluations of SNP
calling have been restricted to eukaryotic (human) data. Additionally, bacterial SNP
calling requires choosing an appropriate reference genome to align reads to, which,
together with the bioinformatic pipeline, affects the accuracy and completeness of a set
of SNP calls obtained.
This study evaluates the performance of 209 SNP calling pipelines using a
combination of simulated data from 254 strains of 10 clinically common bacteria and
real data from environmentally-sourced and genomically diverse isolates within the
genera Citrobacter, Enterobacter, Escherichia and Klebsiella.
 
Results
We evaluated the performance of 209 SNP calling pipelines, aligning reads to
genomes of the same or a divergent strain. Irrespective of pipeline, a principal
determinant of reliable SNP calling was reference genome selection. Across multiple
taxa, there was a strong inverse relationship between pipeline sensitivity and precision,
and the Mash distance (a proxy for average nucleotide divergence) between reads and
reference genome. The effect was especially pronounced for diverse, recombinogenic,
bacteria such as Escherichia coli, but less dominant for clonal species such as
Mycobacterium tuberculosis.
 
Conclusions
The accuracy of SNP calling for a given species is compromised by increasing intra-
species diversity. When reads were aligned to the same genome from which they were
sequenced, among the highest performing pipelines was Novoalign/GATK. By
contrast, when reads were aligned to particularly divergent genomes, the highest-
performing pipelines often employed the aligners NextGenMap or SMALT, and/or the
variant callers LoFreq, mpileup or Strelka. However, across the full range of genomes,
among the consistently highest-performing pipelines was Snippy.
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Response to Reviewers: We would like to thank the reviewers for their comments, which we address in detail
below. All line numbers refer to the unmarked version of the revised text.
Aside from in-text clarifications, the principal changes to this revised version are:
(a)A substantial expansion of the supplementary material to include an archive
comprising original scripts plus raw materials (that is, reference genomes, associated
indices and truth sets) and output (that is, VCFs), allowing replication and expansion of
the evaluation employing real data. This is now available as Supplementary Dataset 2,
at https://ora.ox.ac.uk/objects/uuid:8f902497-955e-4b84-9b85-693ee0e4433e (an
archive of the simulated datasets was already made available in the original
manuscript as Supplementary Dataset 1, at
http://dx.doi.org/10.5287/bodleian:AmNXrjYN8).
(b)An expansion of the number of aligner/caller combinations evaluated (on real data)
from 41 to 209, with associated updates of supplementary tables 9 and 10, and one
additional figure (figure 7). These additional pipelines also now include the ‘all-in-one’
SpeedSeq and SPANDx.
(c)An expansion of the supplementary text to include more detailed justifications for
various choices, such as not repeat-masking the reference genome and for simulating
reads at high depth.

Reviewer reports:

Reviewer #1: This paper presents the results of analyzing several datasets with a
range of short read aligners and variant callers. The analysis is exhaustive and the
results are important for researchers conducting these type of analyses, especially
when using a single reference genome.

The results seem to confirm results seen by others, specifically Bertels et al.
(PMID:24600054) and Sahl et al. (PMID:28348869), neither of which are cited. The
RealPhy paper suggests using multiple reference genomes and merging the results to
mitigate the effects of a distant reference.

Response: We have expanded the text to discuss other approaches to overcoming
issues that arise when using a single reference genome, and have added the two
references suggested by the reviewer. Specifically, we have added, from line 516, the
text:
“An alternative approach to reducing errors introduced when using a single reference
genome could be to merge results from multiple reference genomes (the approach
taken by REALPHY to reconstruct phylogenies from bacterial SNPs [98]) or from
multiple aligners and/or callers, obtaining consensus calls across a set of methods.
This is the approach taken by the NASP pipeline [99], which can integrate data from
any combination of the aligners Bowtie2, BWA-mem, Novoalign and SNAP, and the
callers GATK UnifiedGenotyper, mpileup, SolSNP and VarScan (ensemble approaches
have similarly been used for somatic variant calling, for example by SomaticSeq
[100]).”

The goal of the paper is to analyze 'SNP pipelines', although only a single 'self
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contained' SNP pipeline (Snippy) is included. I would argue that the rest of the
analyses are based on aligner/variant caller pairs and not complete SNP pipelines.
While this could be a semantic issue, comparing Snippy with these other methods
could be considered an apples to oranges comparison. Out of the dozens of 'self
contained' pipelines, why was only Snippy used? The fact that Snippy is performing
much better than its corresponding aligner/variant caller pairs suggests that it is doing
additional work not performed by other 'pipelines'.

Response: We had used ‘pipeline’ as shorthand for ‘aligner/caller combination’, but we
agree they are not synonymous. To that end, we now state early in the introduction
(line 87) that:

“SNP calling pipelines are typically constructed around a read aligner (which takes
FASTQ as input and produces BAM as output) and a variant caller (which takes BAM
as input and produces VCF as output), often with several pre- and post-processing
steps (for instance, cleaning a raw FASTQ prior to alignment, or filtering a BAM prior to
variant calling). For the purpose of this study, when evaluating the two core
components of aligner and caller, we use ‘pipeline’ to mean ‘an aligner/caller
combination, with all other steps in common’.”

Further to the description of each aligner and caller used in this study, we now also
note (line 106) that: “where possible, we applied a common set of pre- or post-
processing steps to each aligner/caller combination, although note that these could
differ from those applied within an ‘all-in-one’ tool (discussed further in Supplementary
Text 1).”

The advantage to users (especially less experienced users) of having “all-in-one/self-
contained” SNP analysis pipelines is clear, however, in that they potentially
substantially streamline bioinformatics workflows; we therefore believe that they are
useful to include in our study. We have now expanded the evaluation to contain two
other ‘all-in-one’ pipelines, SpeedSeq and SPANDx, and discuss in the supplementary
text (line 719) why some others could not reasonably be used – in certain cases,
because they offer the user a choice of aligner and/or caller (such as PHEnix) and so
cannot be easily be evaluated as a single entity. Specifically in line 436 of the main
text, we have added: “in this study we sought to use all aligners and callers uniformly,
with equivalent quality-control steps applied to all reads. To that end, while direct
comparisons of any aligner/caller pipeline with ‘all-in-one’ tools (such as Snippy,
SPANDx and SpeedSeq) are possible, the results should be interpreted with caution.
This is because it is in principle possible to improve the performance of the former
through additional quality control steps – that is, compared to an ‘all-in-one’ tool, it is
not necessarily the aligner or caller alone to which any difference in performance may
be attributed. For instance, although Snippy and SpeedSeq employ BWA-mem and
Freebayes, both tools are distinct from the BWA-mem/Freebayes pipeline used in this
study (Figure 7 and Supplementary Table 10). This is because they implement
additional steps between the BWA and Freebayes components, as well as altering the
default parameters relative to standalone use. Snippy, for example, employs samclip
(https://github.com/tseemann/samclip) to post-process the BAM file produced by BWA-
mem, removing clipped alignments in order to reduce false positive SNPs near
structural variants”.

For introduced SNPs, it would be nice to know which SNPs are in paralogs and tandem
repeats. These regions could be problematic and may be introducing false positives
due to mismapping. While the authors discuss that using long reads could fix some of
these problems, the effects of including these regions on the results should be
considered. For example, the true positive SNPs in the real data analyses are based
on MUMmer and Parsnp, neither of which filter paralogous regions. The nature of the
alignment algorithm would likely control how many false SNPs were reported in these
regions and could impact overall performance.

Response: We agree that the retention of paralogous regions would likely increase the
rate of read mis-mapping and thereby the number of false positive calls, although
assuming this to be a systematic error, it should not affect the rank order of pipelines.
In the ‘study limitations’ section of the discussion, we have added this point to the main
text (line 365): “For the strain-to-representative genome alignments in this study, we
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considered SNP calls only within one-to-one alignment blocks and cannot exclude the
possibility that repetitive or highly mutable regions within these blocks have been
misaligned. However, we did not seek to identify and exclude SNPs from these regions
as, even if present, this would have a systematic negative effect on the performance of
each pipeline. To demonstrate this, we re-calculated each performance metric for the
209 pipelines evaluated using real sequencing data after identifying, and masking,
repetitive regions of the reference genome with self-self BLASTn (as in [77]). As we
already required reference bases within each one-to-one alignment block to be
supported by both nucmer and ParSnp calls (that is, implicitly masking ambiguous
bases), we found that repeat-masking the reference genome had negligible effect on
overall F-score although marginally improved precision (see Supplementary Text 1).”

Within Supplementary Text 1, we added the following text at line 662:
“To demonstrate the effect of additional repeat-masking, we re-calculated precision,
recall and F-score for each of the 209 pipelines evaluated using real sequencing data
(i.e., when aligning 18 sets of non-simulated reads against one of the six
representative Gram-negative genomes detailed in Supplementary Table 8). We did
not test the effect of repeat-masking using the simulated E. coli datasets (as above)
because this represents only one reference genome (i.e., E. coli K-12 substr.
MG1655). Repetitive regions in each genome were first identified by self-self BLASTn
(as in [78]), using BLAST+ v2.7.1 with default parameters, and considered those with
alignments of ≥ 95% identity over length ≥ 100bp, with no more than 1 gap, and an E-
value < 0.05 (not including the match of the entire genome against itself).” We also
illustrate the effect of additional masking on the F-score, precision and recall
distributions with a new figure within Supplementary Text 1 (on page 33).

Some discussion on how these effects could impact data interpretation would be
helpful. In the case of transmission events, one would assume that a closely related
reference would be chosen, which would mitigate biases, any may not be sensitive to
the aligner/caller used. How would these results affect large, population genomics
studies?

Response: We agree that this is a useful point to include, but would note that many
transmission studies use a single reference so that when mapping all isolates (i.e. both
putative outbreak and non-outbreak isolates), the reference is typically most similar to
the outbreak isolates of interest, or is chosen because a particular genome has
widespread prior use in similar evaluations. We have added to the discussion (line
478):
“More closely related genomes would have lower Mash distances and so be more
suitable as reference genomes for SNP calling. This would be particularly appropriate
if, for example, studying transmission events as a closely-related reference would
increase specificity, irrespective of the aligner or caller used. For larger studies that
require multiple samples to be processed using a common reference, the choice of
reference genome could be one which ‘triangulates’ between the set of samples – that
is, has on average a similar distance to each sample, rather than being closer to some
and more distant from others.”

Reviewer #2: In this paper, Bush et al. evaluate a large number of bacterial SNP calling
pipelines against variously divergent references. Their main conclusion is that different
pipelines perform very differently as the reference diverges, and that Jaccard similarity
is a good way to choose the "best" (closest) reference for mapping.

This paper is full of nice figures and analyses, and moreover we have seen the same
thing in our work, so I agreed with the major points of  the paper in advance!

The only real weakness I see in the paper is that the authors use simulated data, which
comes with many advantages but also means that oddball sequencer mistakes are not
necessarily measured. This is an acceptable tradeoff to me, but I wanted to mention
it...

Response: We initially used simulated data from 10 species, although the latter half of
the results section employed real data from 16 environmentally-sourced samples plus
2 reference strains (detailed from line 730 onwards and made available as
Supplementary Dataset 2). The “real-world” isolates used are members of the
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Enterobacteriaceae bacterial family, and are typically genetically complex (i.e. having
multiple orthologs/paralogs, repeats etc), thus representing, in our minds, an
appropriate analytical challenge.

I think the general conclusion that Jaccard similarity (or, really, ANI) is the best way to
choose reference genomes is both important and  indisputable, so it's nice to see a
thorough evaluation of it.

I encourage the authors to make their evaluation code, scripts, notebooks, figure
generation, etc. available. I could not seem to find it. Reproducibility is minimal but
acceptable given Supp Text 1.

Response: We agree that reproducibility is critical to benchmarking studies and to that
end have supplemented the pseudocode of Supplementary Text 1 by:
(a) Making the full set of evaluation and figure creation scripts available as a public
archive, Supplementary Dataset 2 (https://ora.ox.ac.uk/objects/uuid:8f902497-955e-
4b84-9b85-693ee0e4433e). This archive also contains both the raw data necessary for
evaluation (i.e. reads and indexed reference genomes) alongside example output (i.e.
VCFs and summary tables).
(b) Adding an additional ‘operating notes’ section to Supplementary Text 1, detailing
our specific experience with certain tools, with particular regard to bugs and
workarounds. This section may be considered a ‘laboratory notebook’.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Yes
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Availability of data and materials

All datasets and code on which the
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the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
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Background 21 

Accurately identifying SNPs from bacterial sequencing data is an essential requirement for 22 

using genomics to track transmission and predict important phenotypes such as antimicrobial 23 

resistance. However, most previous performance evaluations of SNP calling have been 24 

restricted to eukaryotic (human) data. Additionally, bacterial SNP calling requires choosing 25 

an appropriate reference genome to align reads to, which, together with the bioinformatic 26 

pipeline, affects the accuracy and completeness of a set of SNP calls obtained. 27 

This study evaluates the performance of 41 209 SNP calling pipelines using a combination of 28 

simulated data from 254 strains of 10 clinically common bacteria and real data from 29 

environmentally-sourced and genomically diverse isolates within the genera Citrobacter, 30 

Enterobacter, Escherichia and Klebsiella. 31 
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We evaluated the performance of 41 209 SNP calling pipelines, aligning reads to genomes of 34 

the same or a divergent strain. Irrespective of pipeline, a principal determinant of reliable 35 

SNP calling was reference genome selection. Across multiple taxa, there was a strong inverse 36 

relationship between pipeline sensitivity and precision, and the Mash distance (a proxy for 37 

average nucleotide divergence) between reads and reference genome. The effect was 38 

especially pronounced for diverse, recombinogenic, bacteria such as Escherichia coli, but less 39 

dominant for clonal species such as Mycobacterium tuberculosis. 40 

 41 

Conclusions 42 

The accuracy of SNP calling for a given species is compromised by increasing intra-species 43 

diversity. When reads were aligned to the same genome from which they were sequenced, 44 

among the highest performing pipelines was Novoalign/GATK. By contrast, when reads were 45 

aligned to particularly divergent genomes, the highest-performing pipelines often employed 46 

the aligners NextGenMap or SMALT, and/or the variant callers LoFreq, mpileup or Strelka. 47 

However, across the full range of (divergent) genomes, among the consistently highest-48 

performing pipelines was Snippy. 49 

 50 

Introduction 51 

 52 

Accurately identifying single nucleotide polymorphism (SNPs) from bacterial DNA is 53 

essential for monitoring outbreaks (as in [1, 2]) and predicting phenotypes, such as 54 

antimicrobial resistance [3], although the pipeline selected for this task strongly impacts the 55 

outcome [4]. Current bacterial sequencing technologies generate short fragments of DNA 56 

sequence (‘reads’) from which the bacterial genome can be reconstructed. Reference-based 57 

mapping approaches use a known reference genome to guide this process, using a 58 

combination of an aligner, which identifies the location in the genome each read is likely to 59 

have arisen from, and a variant caller, which summarises the available information at each 60 

site to identify variants including SNPs and indels (see reviews for an overview of alignment 61 

[5, 6] and SNP calling [7] algorithms). This evaluation focuses only on SNP calling; we did 62 

not evaluate indel calling as this can require different algorithms (see review [8]). 63 

The output from different aligner/caller combinations is often poorly concordant. For 64 

example, up to 5% of SNPs are uniquely called by one of five different pipelines [9] with 65 

even lower agreement upon structural variants [10]. 66 

 67 
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Although a mature field, systematic evaluations of variant calling pipelines are often limited 68 

to eukaryotic data, usually human [11-15] but also C. elegans [16] and dairy cattle [17] (see 69 

also review [18]). This is because truth sets of known variants, such as the Illumina Platinum 70 

Genomes [19], are relatively few in number and human-centred, being expensive to create 71 

and biased toward the methods that produced them [20]. As such, to date, bacterial SNP 72 

calling evaluations are comparatively limited in scope (for example, comparing 4 aligners 73 

with 1 caller, mpileup [21], using Listeria monocytogenes [22]). 74 

 75 

Relatively few truth sets exist for bacteria and so the choice of pipeline for bacterial SNP 76 

calling is often informed by performance on human data. Many evaluations conclude in 77 

favour of the publicly-available BWA-mem [23] or commercial Novoalign 78 

(www.novocraft.com) as choices of aligner, and GATK [24, 25] or mpileup as variant callers, 79 

with recommendations for a default choice of pipeline, independent of specific analytic 80 

requirements, including Novoalign followed by GATK [26], and BWA-mem followed by 81 

either mpileup [14], GATK [12], or VarDict [11]. 82 

 83 

This study evaluates a range of SNP calling pipelines across multiple bacterial species, both 84 

when reads are sequenced from and aligned to the same genome, and when reads are aligned 85 

to a representative genome of that species. 86 

 87 

SNP calling pipelines are typically constructed around a read aligner (which takes FASTQ as 88 

input and produces BAM as output) and a variant caller (which takes BAM as input and 89 

produces VCF as output), often with several pre- and post-processing steps (for instance, 90 

cleaning a raw FASTQ prior to alignment, or filtering a BAM prior to variant calling). For 91 

the purpose of this study, when evaluating the two core components of aligner and caller, we 92 

use ‘pipeline’ to mean ‘an aligner/caller combination, with all other steps in common.’ 93 

 94 

In order to cover a broad range of methodological approacheses (see review for an overview 95 

of the different algorithmic approaches [27]), we assessed the combination of 4 16 commonly 96 

used short read aligners (BBMap (https://sourceforge.net/projects/bbmap/), Bowtie2 [28], 97 

BWA-mem and BWA-sw [23], Cushaw3 [29], GASSST [30], GEM [31], HISAT2 [32], 98 

minimap2 [33], MOSAIK [34], NextGenMap [35], Novoalign, SMALT 99 

(http://www.sanger.ac.uk/science/tools/smalt-0), SNAP [36], and Stampy [37] (both with and 100 

without pre-alignment with BWA-aln), and Yara [38]) and used in conjunction with 104 101 
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variant callers (16GT [39], DeepVariant [40], Freebayes [41], GATK HaplotypeCaller [24, 102 

25], LoFreq [42], mpileup [21], Octopus [43], Pilon [44], Platypus [45], SolSNP 103 

(http://sourceforge.net/projects/solsnp/), SNVer [46], SNVSniffer [47], Strelka [48] and 104 

VarScan [49])., alongside We also evaluated three self-contained ‘all-in-one’ variant calling 105 

pipelines, Snippy (https://github.com/tseemann/snippy), SPANDx [50] and SpeedSeq [51], 106 

which consolidate various open-source packages into one toola haploid core variant calling 107 

pipeline constituting a bespoke aligner/caller combination of BWA-mem, minimap2, and 108 

Freebayes. Reasons for excluding other programs are detailed in Supplementary Text 1. 109 

Where possible, we applied a common set of pre- or post-processing steps to each 110 

aligner/caller combination, although note that these could differ from those applied within an 111 

‘all-in-one’ tool (discussed further in Supplementary Text 1). 112 

 113 

Benchmarking evaluations are, however comprehensive, ephemeral. As programs are being 114 

constantly created and updated, it will always be possible to expand the scope of any 115 

evaluation. To that end, this study originally assessed an initial subset of 41 pipelines, the 116 

combination of 4 aligners (BWA-mem, minimap2, Novoalign, and Stampy) and 10 variant 117 

callers (the aforementioned list, excluding DeepVariant, Octopus, Pilon, and SolSNP), plus 118 

Snippy. 119 

 120 

To evaluate each of this initial set of 41 pipelines, we simulated 3 sets of 150bp and 3 sets of 121 

300bp reads (characteristic of the Illumina NextSeq and MiSeq platforms, respectively) at 50-122 

fold depth from 254 strains of 10 clinically common species (2 to 36 strains per species), 123 

each with fully sequenced (closed) core genomes: the Gram-positive Clostridioides difficile 124 

(formerly Clostridium difficile [52]), Listeria monocytogenes, Staphylococcus aureus, and 125 

Streptococcus pneumoniae (all Gram-positive), Escherichia coli, Klebsiella pneumoniae, 126 

Neisseria gonorrhoeae, Salmonella enterica, and Shigella dysenteriae (all Gram-negative), 127 

and Mycobacterium tuberculosis. For each strain, we evaluated all pipelines using two 128 

different genomes for alignment: one being the same genome from which the reads were 129 

simulated, and one being the NCBI ‘reference genome’, a high-quality (but essentially 130 

arbitrary) representative of that species, typically chosen on the basis of assembly and 131 

annotation quality, available experimental support, and/or wide recognition as a community 132 

standard (such as C. difficile 630, the first sequenced strain for that species [53]). We added 133 

approximately 8000-25,000 SNPs in silico to each genome, equivalent to 5 SNPs per genic 134 

region, or 1 SNP per 60-120 bases. 135 
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 136 

While simulation studies can offer useful insight, they can be sensitive to the specific details 137 

of the simulations. Therefore, we also evaluated performance on real data to verify our 138 

conclusions. We used 16 environmentally-sourced and genomically diverse Gram-negative 139 

species of the genera Citrobacter, Enterobacter, Escherichia and Klebsiella, along with two 140 

reference strains, from which closed hybrid de novo assemblies were previously generated 141 

using both Illumina (short) and ONT (long; Oxford Nanopore Technologies) reads [54]. For 142 

this aspect of the study, we quintupled the scope of the evaluation from the initial set of 41 143 

pipelines and also present results for a larger set of 209 pipelines. 144 

 145 

All pipelines aim to call variants with high specificity (i.e. a high proportion of non-variant 146 

sites in the truth set are correctly identified as the reference allele by the pipeline) and high 147 

sensitivity (i.e. a high proportion of true SNPs are found by the pipeline, a.k.a. recall). The 148 

optimal trade-off between these two properties may vary depending on the application. For 149 

example, in transmission inference, minimising false positive SNP calls (i.e. high specificity), 150 

is likely to be most important, whereas high sensitivity may be more important when 151 

identifying variants associated with antibiotic resistance. We therefore report detailed 152 

performance metrics for all pipelines, including recall (/sensitivity), precision (a.k.a. positive 153 

predictive value, the proportion of SNPs identified that are true SNPs), and the F-score, the 154 

harmonic mean of precision and recall [55]. 155 

 156 

Results 157 

 158 

Evaluating SNP calling pipelines when the genome for alignment is also the source of the 159 

reads 160 

The performance of 41 SNP calling pipelines (Supplementary Table 1) was first evaluated 161 

using reads simulated from 254 closed bacterial genomes (Supplementary Table 2), as 162 

illustrated in Figure 1. In order to exclude biases introduced during other parts of the 163 

workflow, such as DNA library preparation and sequencing error, reads were simulated error-164 

free. There was negligible difference in performance when reads were simulated with 165 

sequencing errors (see Supplementary Text 1). 166 

 167 

This dataset contains 62,484 VCFs (comprising 2 read lengths [150 and 300bp] * 3 replicates 168 

* 254 genomes * 41 pipelines). The number of reads simulated from each species and the 169 
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performance statistics for each pipeline – the number of true positives (TP), false positives 170 

(FP) and false negatives (FN), precision, recall, F-score, and total number of errors (i.e. FP + 171 

FN) per million sequenced bases – are given in Supplementary Table 3, with the distribution 172 

of F-scores illustrated in Figure 2A. 173 

 174 

Median F-scores were over 0.99 for all but four aligner/callers with small interquartile ranges 175 

(approx. 0.005), although outliers were nevertheless notable (Figure 2A), suggesting that 176 

reference genome can affect performance of a given pipeline. 177 

 178 

Table 1 shows the top ranked pipelines averaged across all species’ genomes, based on 7 179 

different performance measures and on the sum of their ranks (which constitutes an ‘overall 180 

performance’ measure, lower values indicating higher overall performance). Supplementary 181 

Table 4 shows the sum of ranks for each pipeline per species, with several variant callers 182 

consistently found among the highest-performing (Freebayes and GATK) and lowest-183 

performing pipelines (16GT and SNVSniffer), irrespective of aligner. 184 

 185 

If considering performance across all species, Novoalign/GATK hasd the highest median F-186 

score (0.994), lowest sum of ranks (10), the lowest number of errors per million sequenced 187 

bases (0.944), and the largest absolute number of true positive calls (15,778) (Table 1). 188 

However, in this initial simulation, as the reads are error-free and the reference genome is the 189 

same as the source of the reads, many pipelines avoid false positive calls and report a perfect 190 

precision of 1. 191 

 192 

Evaluating SNP calling pipelines when the genome for alignment diverges from the source 193 

of the reads 194 

Due to the high genomic diversity of some bacterial species, the appropriate selection of 195 

reference genomes is non-trivial. To assess how pipeline performance is affected by 196 

divergence between the source and reference genomes, SNPs were re-called after mapping all 197 

reads to a single representative genome for that species (illustrated in Figure 1). To identify 198 

true variants, closed genomes were aligned against the representative genome using both 199 

nucmer [56] and Parsnp [57], with consensus calls identified within one-to-one alignment 200 

blocks (see Methods). Estimates of the distance between each genome and the representative 201 

genome are given in Supplementary Table 2, with the genomic diversity of each species 202 

summarised in Supplementary Table 5. We quantified genomic distances using the Mash 203 
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distance, which reflects the proportion of k-mers shared between a pair of genomes as a 204 

proxy for average nucleotide divergence [58]. The performance statistics for each pipeline are 205 

shown in Supplementary Table 6, with an associated ranked summary in Supplementary 206 

Table 7. 207 

In general, aligning reads from one strain to a divergent reference leads to a decrease in 208 

median F-score and increase in interquartile range of the F-score distribution, with pipeline 209 

performance more negatively affected by choice of aligner than caller (Figure 2B). 210 

 211 

Although across the full range of genomes, many pipelines show comparable performance 212 

(Figure 2B), there was a strong negative correlation between the Mash distance and F-score 213 

(Spearman’s rho = -0.72, p < 10-15; Figure 3A). The negative correlation between F-score and 214 

the total number of SNPs between the strain and representative genome, i.e. the set of strain-215 

specific in silico SNPs plus inter-strain SNPs, was slightly weaker (rho = -0.58, p < 10-15; 216 

Supplementary Figure 1). This overall reduction in performance with increased divergence 217 

was more strongly driven by reductions in recall (i.e., by an increased number of false 218 

negative calls) rather than precision as there was a particularly strong correlation between 219 

distance and recall (Spearman’s rho = -0.94, p < 10-15; Supplementary Figure 2). 220 

 221 

Three commonly used pipelines – BWA-mem/Freebayes, BWA-mem/GATK and 222 

Novoalign/GATK – were among the highest performers when the reference genome is also 223 

the source of the reads (Table 1 and Supplementary Table 4). However, when the reference 224 

diverges from the reads, then considering the two ‘overall performance’ measures across the 225 

set of 10 species, Snippy instead has both the lowest sum of ranks (20) and the highest 226 

median F-score (0.982), along with the lowest number of errors per million sequenced bases 227 

(2.6) (Table 1). 228 

 229 

Performance per species is shown in Table 2, alongside both the overall sum and range of 230 

these ranks per pipeline. Pipelines featuring Novoalign were, in general, consistently high-231 

performing across the majority of species (that is, having a lower sum of ranks), although 232 

were outperformed by Snippy, which had both strong and uniform performance across all 233 

species (Table 2). By contrast, pipelines with a larger range of ranks had more inconsistent 234 

performance, such as minimap2/SNVer, which for example performed relatively strongly for 235 

N. gonorrhoeae but poorly for S. dysenteriae (Table 2). 236 

 237 
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While, in general, the accuracy of SNP calling declined with increasing genetic distances, 238 

some pipelines were more stable than others (Figure 3B). If considering the median 239 

difference in F-score between SNP calls made using the same versus a representative 240 

genome, Snippy had smaller differences as the distance between genomes increased (Figure 241 

4). 242 

 243 

The highest ranked pipelines in Table 2 had small, but practically unimportant, differences in 244 

median F-score and so are arguably equivalently strong candidates for a ‘general purpose’ 245 

SNP calling solution. For instance, on the basis of F-score alone the performance of 246 

Novoalign/mpileup is negligibly different from BWA-mem/mpileup (Figure 5). However, 247 

when directly comparing pipelines, similarity of F-score distributions (see Figure 2B) can 248 

conceal larger differences in either precision or recall, categorised using the effect size 249 

estimator Cliff’s delta [59, 60]. Thus, certain pipelines may be preferred if the aim is to 250 

minimise false positive (e.g. for transmission analysis) or maximise true positive (e.g. to 251 

identify antimicrobial resistance loci) calls. For instance, although Snippy (the top ranked 252 

pipeline in Table 2) is negligibly different from Novoalign/mpileup (the third ranked 253 

pipeline) in terms of F-score and precision, the former is more sensitive (Figure 5). 254 

 255 

Comparable accuracy of SNP calling pipelines if using real rather than simulated 256 

sequencing data 257 

We used real sequencing data from a previous study comprising 16 environmentally-sourced 258 

Gram-negative isolates (all Enterobacteriaceae), derived from livestock farms, sewage, and 259 

rivers, and cultures of two reference strains (K. pneumoniae subsp. pneumoniae MGH 78578 260 

and E. coli CFT073), for which closed hybrid de novo assemblies were generated using both 261 

Illumina paired-end short reads and Nanopore long reads [61]. Source locations for each 262 

sample, species predictions and NCBI accession numbers are detailed in Supplementary 263 

Table 8. The performance statistics for each pipeline are shown in Supplementary Table 9, 264 

with an associated ranked summary in Supplementary Table 10. 265 

 266 

Lower performance was anticipated for all pipelines, particularly for Citrobacter and 267 

Enterobacter isolates, which had comparatively high Mash distances (> 0.08) between the 268 

reads and the representative genome (Supplementary Table 8), far greater than those in the 269 

simulations (241 of the 254 simulated genomes had a Mash distance to the representative 270 

genome of < 0.04; Supplementary Table 2). Consistent with the simulations (Figure 3A), 271 
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there was a strong negative correlation between Mash distance and the median F-score across 272 

all pipelines (Spearman’s rho = -0.83, p = 3.36x10-5; Figure 6A), after excluding one 273 

prominent outlier (E. coli isolate RHB11-C04; see Supplementary Table 8). 274 

 275 

Notably, the median precision of each pipeline, if calculated across the divergent set of 276 

simulated genomes, strongly correlated with the median precision calculated across the set of 277 

real genomes (Spearman’s rho = 0.83, p = 2.81x10-11; Figure 6B). While a weaker correlation 278 

was seen between simulated and real datasets on the basis of recall (Spearman’s rho = 0.41, p 279 

= 0.007), this is consistent with the high diversity of Enterobacteriaceae, and the accordingly 280 

greater number of false negative calls with increased divergence (Supplementary Figure 2). 281 

 282 

Overall, this suggests that the accuracy of a given pipeline on simulated data is a reasonable 283 

proxy for its performance on real data. While the poorer performing pipelines when using 284 

simulated data are similarly poorer performing when using real data, the top ranked pipelines 285 

differ, predominantly featuring BWA-mem, rather than Novoalign, as an aligner 286 

(Supplementary Table 10). In both cases, however, among the consistently highest 287 

performing pipelines is Snippy. 288 

 289 

Quantitatively similar results were found when quintupling the scope of this evaluation to 290 

include 209 pipelines (Figure 7). With this Gram-negative dataset, the most consistently 291 

highly performing pipelines had little variation in F-score, irrespective of the 10-fold 292 

difference in Mash distances between reads and representative genome (Supplementary Table 293 

8). Particularly highly performing pipelines in the expanded dataset employed the aligners 294 

NextGenMap or SMALT, and/or the variant callers LoFreq, mpileup or Strelka (Figure 7). 295 

 296 

Discussion 297 

 298 

Reference genome selection strongly affects SNP calling performance 299 

Here we have initially evaluated 41 SNP calling pipelines, the combination of 4 aligners with 300 

10 callers, plus one self-contained pipeline, Snippy, using reads simulated from 10 clinically 301 

relevant species. These reads were first aligned back to their source genome and SNPs called. 302 

As expected under these conditions, the majority of SNP calling pipelines showed high 303 

precision and sensitivity, although between-species variation was prominent. 304 

 305 
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We next expanded the scope of the evaluation to 209 pipelines and introduced a degree of 306 

divergence between the reference genome and the reads, analogous to having an accurate 307 

species-level classification of the reads but no specific knowledge of the strain. For the 308 

purposes of this study, we assumed that reference genome selection was essentially arbitrary, 309 

equivalent to a community standard representative genome. Such a genome can differ 310 

significantly from the sequenced strain, which complicates SNP calling by introducing inter-311 

specific variation between the sequenced reads and the reference. Importantly, all pipelines in 312 

this study are expected to perform well if evaluated with human data, i.e. when there is a 313 

negligible Mash distance between the reads and the reference. For example, the mean Mash 314 

distance between human assembly GRCh38.p12 and the 3 Ashkenazi assemblies of the 315 

Genome In A Bottle dataset (deep sequencing of a mother, father and son trio [62-64], 316 

available under ENA study accession PRJNA200694 and GenBank assembly accessions 317 

GCA_001549595.1, GCA_001549605.1, and GCA_001542345.1, respectively) is 0.001 (i.e., 318 

consistent with previous findings that the majority of the human genome has approximately 319 

0.1% sequence divergence [65]). Notably, the highest performing pipeline when reads were 320 

aligned to the same genome from which they were simulated, Novoalign/GATK, was also 321 

that used by the Genome In A Bottle consortium to align human reads to the reference [62]. 322 

 323 

While tools initially benchmarked on human data, such as SNVSniffer [47], can in principle 324 

also be used on bacterial data, this study shows that in practice many perform poorly. For 325 

example, the representative C. difficile strain, 630, has a mosaic genome, approximately 11% 326 

of which comprises mobile genetic elements [53]. With the exception of reads simulated from 327 

C. difficile genomes which are erythromycin-sensitive derivatives of 630 (strains 630Derm 328 

and 630deltaerm; see [66]), aligning reads to 630 compromises accurate SNP calling, 329 

resulting in a lower median F-score across all pipelines (Figure 3A). We also observed 330 

similar decreases in F-score for more recombinogenic species such as N. gonorrhoeae, which 331 

has a phase-variable gene repertoire [67] and has been used to illustrate the ‘fuzzy species’ 332 

concept, that recombinogenic bacteria do not form clear and distinct isolate clusters as 333 

assayed by phylogenies of common housekeeping loci [68, 69]. By contrast, for clonal 334 

species, such as those within the M. tuberculosis complex [70], the choice of reference 335 

genome has negligible influence on the phylogenetic relationships inferred from SNP calls 336 

[71] and, indeed, minimal effect on F-score. 337 

 338 
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In general, more diverse species have a broader range of Mash distances on Figure 2A 339 

(particularly notable for E. coli), as do those forming distinct phylogroups, such as the two 340 

clusters of L. monocytogenes, consistent with the division of this species into multiple 341 

primary genetic lineages [72-74]. 342 

 343 

Therefore, one major finding of this study is that, irrespective of the core components within 344 

a SNP calling pipeline, the selection of reference genome has a critical effect on output, 345 

particularly for more recombinogenic species. This can to some extent be mitigated by using 346 

variant callers that are more robust to increased distances between the reads and the 347 

reference, such as Freebayes (employed by Snippy). 348 

 349 

A sub-optimal choice of reference genome has previously been shown to result in mapping 350 

errors, leading to biases in allelic proportions [75]. Heterologous reference genomes are in 351 

general sub-optimal for read mapping, even when there is strict correspondence between 352 

orthologous regions, with short reads particularly vulnerable to false positive alignments [76]. 353 

There is also an inverse relationship between true positive SNP calls and genetic distance, 354 

with a greater number of false positives when the reads diverge from the reference genome 355 

[22]. 356 

 357 

Study limitations 358 

The experimental design made several simplifying assumptions regarding pipeline usage. 359 

Most notably, when evaluating SNP calling when the reference genome diverges from the 360 

source of the reads, we needed to convert the coordinates of one genome to those of another, 361 

doing so by whole genome alignment. We took a similar approach to that used to evaluate 362 

Pilon, an all-in-one tool for correcting draft assemblies and variant calling [44], which made 363 

whole genome alignments of the M. tuberculosis F11 and H37Rv genomes and used the 364 

resulting set of inter-strain variants as a truth set for benchmarking (a method we also used 365 

when evaluating each pipeline on real data). While this approach assumes a high degree of 366 

contiguity for the whole genome alignment, there are nevertheless significant breaks in 367 

synteny between F11 and H37Rv, with two regions deemed particularly hypervariable, in 368 

which no variant could be confidently called [44]. For the strain-to-representative genome 369 

alignments in this study, we considered SNP calls only within one-to-one alignment blocks 370 

and cannot exclude the possibility that repetitive or highly mutable regions within these 371 

blocks have been misaligned. However, we did not seek to identify and exclude SNPs from 372 
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these regions as, even if present, this would have a systematic negative effect on the 373 

performance of each pipeline. To demonstrate this, we re-calculated each performance metric 374 

for the 209 pipelines evaluated using real sequencing data after identifying, and masking, 375 

repetitive regions of the reference genome with self-self BLASTn (as in [77]). As we already 376 

required reference bases within each one-to-one alignment block to be supported by both 377 

nucmer and Parsnp calls (that is, implicitly masking ambiguous bases), we found that repeat-378 

masking the reference genome had negligible effect on overall F-score although marginally 379 

improved precision (see Supplementary Text 1). 380 

 381 

Furthermore, when aligning reads from one genome to a different genome, it is not possible 382 

to recover all possible SNPs introduced with respect to the former, as some will be found 383 

only within genes unique to the original genome (of which there can be many, as bacterial 384 

species have considerable genomic diversity; see Supplementary Table 5). Nevertheless, 385 

there is a strong relationship between the total number of SNPs introduced in silico into one 386 

genome and the maximum number of SNPs it is possible to call should reads instead be 387 

aligned to a divergent genome (Supplementary Figure 3). In any case, this does not affect the 388 

evaluation metrics used for pipeline evaluation, such as F-score, as these are based on 389 

proportional relationships of true positive, false positive and false negative calls at variant 390 

sites. However, we did not count true negative calls (and thereby assess pipeline specificity) 391 

as these can only be made at reference sites, a far greater number of which do not exist when 392 

aligning between divergent genomes. 393 

 394 

While the programs chosen for this study are in common use and the findings generalisable, it 395 

is also important to note that they are a subset of the tools available (see Supplementary Text 396 

1). It is also increasingly common to construct more complex pipelines that call SNPs with 397 

one tool and structural variants with another (for example, in [78]). Here, our evaluation 398 

concerned only accurate SNP calling, irrespective of the presence of structural variants 399 

introduced by sub-optimal reference genome selection (that is, by aligning the reads to a 400 

divergent genome) and so does not test dedicated indel calling algorithms. Previous indel-401 

specific variant calling evaluations, using human data, have recommended Platypus [8] or, 402 

for calling large indels at low read depths, Pindel [79]. 403 

 404 

Many of the findings in this evaluation are also based on simulated error-free data for which 405 

there was no clear need for pre-processing quality control. While adaptor removal and 406 
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quality-trimming reads are recommended precautionary steps prior to analysing non-407 

simulated data, previous studies differ as to whether pre-processing increases the accuracy of 408 

SNP calls [80], has minimal effect upon them [81], or whether benefits instead depend upon 409 

the aligner and reference genome used [22]. While more realistic datasets would be subject to 410 

sequencing error, we also expect this to be minimal: Illumina platforms have a per-base error 411 

rate < 0.01% [82]. Accordingly, when comparing pipelines taking either error-free or error-412 

containing reads as input, sequencing error had negligible effect on performance (see 413 

Supplementary Text 1). 414 

 415 

We have also assumed that given the small genome sizes of bacteria, a consistently high 416 

depth of coverage is expected in non-simulated datasets, and so have not evaluated pipeline 417 

performance on this basis (discussed further in Supplementary Text 1). In any case, a 418 

previous study found that with simulated NextSeq reads, variant calling sensitivity was 419 

largely unaffected by increases in coverage [55]. It has also been reported that random 420 

polymerase errors have minimal effect on variant calls for sequencing depths greater than 20-421 

fold, and that these are primarily of concern only when calling minor variants [75]. 422 

 423 

Finally, so as to approximate ‘out of the box’ use conditions, we made a minimal effort 424 

application of each program with no attempt at species-specific optimisation. Had we 425 

optimised the individual components of an analytic pipeline (which, although often structured 426 

around, are not limited to one aligner and one caller), we could conceivably reduce the high 427 

variance in F-score when SNP calling from real data which, in this study, was notably 428 

divergent (see Figure 7). For instance, DeepVariant [40], a TensorFlow machine-learning 429 

based variant caller, had highly variable performance on real data but required as input a 430 

training model made using a deep neural network. At the time of use, there was currently no 431 

production-grade DeepVariant training pipeline (the default training model supplied with 432 

DeepVariant, and used in this study, was based on human data), nor were there a large 433 

enough number of non-simulated, bacterial truth sets on which to train it. As such, we expect 434 

the performance of DeepVariant to have been under-estimated in this evaluation. Most 435 

notably, NextGenMap/DeepVariant was the most precise of the 209 pipelines evaluated on 436 

(divergent) real data (mean precision = 0.9715), although this pipeline had comparatively low 437 

recall and an accordingly poor F-score (Supplementary Table 10). 438 

 439 
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In this study we sought to use all aligners and callers uniformly, with equivalent quality-440 

control steps applied to all reads. To that end, while direct comparisons of any aligner/caller 441 

pipeline with ‘all-in-one’ tools (such as Snippy, SPANDx and SpeedSeq) are possible, the 442 

results should be interpreted with caution. This is because it is in principle possible to 443 

improve the performance of the former through additional quality control steps – that is, 444 

compared to an ‘all-in-one’ tool, it is not necessarily the aligner or caller alone to which any 445 

difference in performance may be attributed. For instance, although Snippy and SpeedSeq 446 

employ BWA-mem and Freebayes, both tools are distinct from the BWA-mem/Freebayes 447 

pipeline used in this study (Figure 7 and Supplementary Table 10). This is because they 448 

implement additional steps between the BWA and Freebayes components, as well as altering 449 

the default parameters relative to standalone use. Snippy, for example, employs samclip 450 

(https://github.com/tseemann/samclip) to post-process the BAM file produced by BWA-451 

mem, removing clipped alignments in order to reduce false positive SNPs near structural 452 

variants. 453 

 454 

Recommendations for bacterial SNP calling 455 

Our results emphasise that one of the principal difficulties of alignment-based bacterial SNP 456 

calling is not pipeline selection per se but optimal reference genome selection (or, 457 

alternatively, its de novo creation, not discussed further). If assuming all input reads are from 458 

a single, unknown, origin, then in principle a reference genome could be predicted using a 459 

metagenomic classifier such as Centrifuge [83], CLARK [84], Kaiju [85] or Kraken [86]. 460 

However, correctly identifying the source genome from even a set of single-origin reads is 461 

not necessarily simple with the performance of read classifiers depending in large part on the 462 

sequence database they query (such as, for instance, EMBL proGenomes [87] or NCBI 463 

RefSeq [88]), which can vary widely in scope, redundancy, and degree of curation (see 464 

performance evaluations [89, 90]). This is particularly evident among the Citrobacter 465 

samples in the real dataset, with 3 methods each making different predictions (Supplementary 466 

Table 8). Specialist classification tools such as Mykrobe [91] use customised, tightly curated, 467 

allele databases and perform highly for certain species (in this case, M. tuberculosis and S. 468 

aureus) although by definition do not have wider utility. An additional complication would 469 

also arise from taxonomic disputes such as, for example, Shigella spp. being essentially 470 

indistinct from E. coli [92]. 471 

 472 
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One recommendation, which is quick and simple to apply, would be to test which of a set of 473 

candidate reference genomes is most suitable by estimating the distance between each 474 

genome and the reads. This can be accomplished using Mash [58], which creates ‘sketches’ 475 

of sequence sets (compressed representations of their k-mer distributions) and then estimates 476 

the Jaccard index (that is, the fraction of shared k-mers) between each pair of sequences. 477 

Mash distances are a proxy both for average nucleotide identity [58] and measures of genetic 478 

distance derived from the whole genome alignment of genome pairs (Supplementary Table 479 

2), correlating strongly with the total number of SNPs between the strain genome and the 480 

representative genome (Spearman’s rho = 0.97, p < 10-15), and to a reasonable degree with 481 

the proportion of bases unique to the strain genome (Spearman’s rho = 0.48, p < 10-15). More 482 

closely related genomes would have lower Mash distances and so be more suitable as 483 

reference genomes for SNP calling. This would be particularly appropriate if, for example, 484 

studying transmission events as a closely-related reference would increase specificity, 485 

irrespective of the aligner or caller used. For larger studies that require multiple samples to be 486 

processed using a common reference, the choice of reference genome could be one which 487 

‘triangulates’ between the set of samples – that is, has on average a similar distance to each 488 

sample, rather than being closer to some and more distant from others. 489 

 490 

Using a highly divergent genome (such as the representative Enterobacter genomes in the 491 

real dataset, each of which differs from the reads by a Mash distance > 0.1; Supplementary 492 

Table 8) is analogous to variant calling in a highly polymorphic region, such as the human 493 

leukocyte antigen, which shows > 10% sequence divergence between haplotypes [65] (i.e., 494 

even for pipelines optimised for human data – the majority in this study – this would 495 

represent an anomalous use case). 496 

 497 

Prior to using Mash (or other sketch-based distance-estimators, such as Dashing [93] or 498 

FastANI [94]), broad-spectrum classification tools such as Kraken could be used to narrow 499 

down the scope of the search space to a set of fully-sequenced candidate genomes, i.e. those 500 

genomes of the taxonomic rank to which the highest proportion of reads could be assigned 501 

with confidence. This approach is similar to that implemented by the Python package 502 

PlentyOfBugs (https://github.com/nickp60/plentyofbugs) which, assuming you already know 503 

the species or genus, automates the process of downloading and sketching candidate genomes 504 

to create a database for querying with Mash. 505 

 506 
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In the future, reads from long-read sequencing platforms, such as Oxford Nanopore and 507 

PacBio, are less likely to be ambiguously mapped within a genomic database and so in 508 

principle are simpler to classify (sequencing error rate notwithstanding), making it easier to 509 

select a suitable reference genome. However, long-read platforms can also, in principle if not 510 

yet routinely, generate complete de novo bacterial genomes [95] for downstream SNP calling, 511 

possibly removing the need to choose a reference entirely. Similarly, using a reference pan-512 

genome instead of a singular representative genome could also maximise the number of SNP 513 

calls by reducing the number of genes not present in the reference [96]. A popular means of 514 

representing the pan-genome, as used by tools such as Roary [97], is as a collection of 515 

individual consensus sequences, ostensibly genes but more specifically open reading frames 516 

with protein-coding potential. This use of consensus sequences could also reduce the number 517 

of nucleotide differences between a set of sequenced reads (which may be from a highly 518 

divergent strain) and the (consensus) reference. 519 

 520 

An alternative approach to reducing errors introduced when using a single reference genome 521 

could be to merge results from multiple reference genomes (the approach taken by 522 

REALPHY to reconstruct phylogenies from bacterial SNPs [98]) or from multiple aligners 523 

and/or callers, obtaining consensus calls across a set of methods. This is the approach taken 524 

by the NASP pipeline [99], which can integrate data from any combination of the aligners 525 

Bowtie2, BWA-mem, Novoalign and SNAP, and the callers GATK, mpileup, SolSNP and 526 

VarScan (ensemble approaches have similarly been used for somatic variant calling, for 527 

example by SomaticSeq [100]). 528 

 529 

If considering the overall performance of a pipeline as the sum of the 7 different ranks for the 530 

different metrics considered, then averaged across the full set of species’ genomes, the 531 

highest performing pipelines are, with simulated data, Snippy and those utilising Novoalign 532 

in conjunction with LoFreq or mpileup (Table 2), and with real (more divergent) data, those 533 

utilising NextGenMap or SMALT in conjunction with LoFreq, mpileup or Strelka or mpileup 534 

(Supplementary Table 10). 535 

 536 

Some of the higher-performing tools apply error-correction models that also appear suited to 537 

bacterial datasets with high SNP density, despite their original primary use case being in 538 

different circumstances. For instance, SNVer (which in conjunction with BWA-mem, ranks 539 

second to Snippy for N. gonorrhoeae; see Table 2) implements a statistical model for calling 540 
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SNPs from pooled DNA samples, where variant allele frequencies are not expected to be 541 

either 0, 0.5 or 1 [46]. SNP calling from heterogeneous bacterial populations with high 542 

mutation rates, in which only a proportion of cells may contain a given mutation, is also 543 

conceptually similar to somatic variant calling in human tumours, where considerable noise is 544 

expected [75]. This is a recommended use case for Strelka, which performed highly on real 545 

(and particularly divergent) data, being among the top-performing pipelines when paired with 546 

many aligners (Figure 7). (this is a recommended use case for Strelka, which performed 547 

highly on real data; Supplementary Table 10). 548 

 549 

Irrespective of pipeline employed, increasing Mash distances between the reads and the 550 

reference increases the number of false negative calls (Supplementary Figure 2). 551 

Nevertheless, Snippy, which employs Freebayes, is particularly robust to this, being among 552 

the most sensitive pipelines (Figure 5 and Supplementary Figure 4). Notably, Freebayes is 553 

haplotype-based, calling variants based on the literal sequence of reads aligned to a particular 554 

location, so avoiding the problem of one read having multiple possible alignments 555 

(increasingly likely with increasing genomic diversity) but only being assigned to one of 556 

them. However, as distance increases further, it is likely that reads will cease being 557 

misaligned (which would otherwise increase the number of false positive calls) but rather 558 

they will not be aligned at all, being too dissimilar to the reference genome. 559 

 560 

With an appropriate selection of reference genome, many of these higher-performing 561 

pipelines could be optimised to converge on similar results by tuning parameters and post-562 

processing VCFs with specific filtering criteria, another routine task for which there are many 563 

different choices of application [101-104]. In this respect, the results of this study should be 564 

interpreted as a range-finding exercise, drawing attention to those SNP calling pipelines 565 

which, under default conditions, are generally higher-performing and which may be most 566 

straightforwardly optimised to meet user requirements. 567 

 568 

Conclusions 569 

 570 

We have performed a comparison of SNP calling pipelines across both simulated and real 571 

data in multiple bacterial species, allowing us to benchmark their performance for this 572 

specific use. We find that all pipelines show extensive species-specific variation in 573 

performance, which has not been apparent from the majority of existing, human-centred, 574 
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benchmarking studies. While aligning to a single representative genome is common practice 575 

in eukaryotic SNP calling, in bacteria the sequence of this genome may diverge considerably 576 

from the sequence of the reads. A critical factor affecting the accuracy of SNP calling is thus 577 

the selection of a reference genome for alignment. This is complicated by ambiguity as to the 578 

strain of origin for a given set of reads, which is perhaps inevitable for many recombinogenic 579 

species, a consequence of the absence (or impossibility) of a universal species concept for 580 

bacteria (but see [105]). For many clinically common species, excepting M. tuberculosis, the 581 

use of standard ‘representative’ reference genomes can compromise accurate SNP calling by 582 

disregarding genomic diversity. By first considering the Mash distance between the reads and 583 

a candidate set of reference genomes, a genome with minimal distance may be chosen that, in 584 

conjunction with one of the higher performing pipelines, can maximise the number of true 585 

variants called. 586 

  587 

Materials and Methods 588 

 589 

Simulating truth sets of SNPs for pipeline evaluation 590 

264 genomes, representing a range of strains from 10 bacterial species, and their associated 591 

annotations, were obtained from the NCBI Genome database [106] 592 

(https://www.ncbi.nlm.nih.gov/genome, accessed 16th August 2018), as detailed in 593 

Supplementary Table 2. One genome per species is considered to be a representative genome 594 

(criteria detailed at https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/, accessed 16th 595 

August 2018), indicated in Supplementary Table 2. Strains with incomplete genomes (that is, 596 

assembled only to the contig or scaffold level) or incomplete annotations (that is, with no 597 

associated GFF, necessary to obtain gene coordinates) were excluded, as were those with 598 

multiple available genomes (that is, the strain name was not unique). After applying these 599 

filters, all species were represented by approx. 30 complete genomes (28 C. difficile, 29 M. 600 

tuberculosis and 36 S. pneumoniae), with the exceptions of N. gonorrhoeae (n = 15) and S. 601 

dysenteriae (n = 2). For the 5 remaining species (E. coli, K. pneumoniae, L. monocytogenes, 602 

S. aureus and S. enterica), there are > 100 usable genomes each. As it was not 603 

computationally tractable to test every genome, we chose a subset of isolates based on 604 

stratified selection by population structure. We created all-against-all distance matrices using 605 

the ‘triangle’ component of Mash v2.1 [58], then constructed dendrograms (Supplementary 606 

Figures 5 to 9) from each matrix using the neighbour joining method, as implemented in 607 
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MEGA v7.0.14 [107]. By manually reviewing the topology, 30 isolates were chosen per 608 

species to create a representative sample of its diversity. 609 

 610 

For each genome used in this study, we excluded, if present, any non-chromosomal (i.e. 611 

circular plasmid) sequence. A simulated version of each core genome, with exactly 5 612 

randomly generated SNPs per genic region, was created using Simulome v1.2 [108] with 613 

parameters --whole_genome=TRUE --snp=TRUE --num_snp=5. As the coordinates of some 614 

genes overlap, not all genes will contain simulated SNPs. The number of SNPs introduced 615 

into each genome (from approximately 8000 to 25,000) and the median distance between 616 

SNPs (from approximately 60 to 120 bases) is detailed in Supplementary Table 2. 617 

 618 

The coordinates of each SNP inserted into a given genome are, by definition, genome- (that 619 

is, strain-) specific. As such, it is straightforward to evaluate pipeline performance when 620 

reads from one genome are aligned to the same reference. However, in order to evaluate 621 

pipeline performance when reads from one genome are aligned to the genome of a divergent 622 

strain (that is, the representative genome of that species), the coordinates of each strain’s 623 

genome need to be converted to representative genome coordinates. To do so, we made 624 

whole genome (core) alignments of the representative genome to both versions of the strain 625 

genome (one with and one without SNPs introduced in silico) using nucmer and dnadiff, 626 

components of MUMmer v4.0.0beta2 [56], with default parameters (illustrated in Figure 1). 627 

For one-to-one alignment blocks, differences between each pair of genomes were identified 628 

using MUMmer show-snps with parameters -Clr -x 1, with the tabular output of this program 629 

converted to VCF by the script MUMmerSNPs2VCF.py 630 

(https://github.com/liangjiaoxue/PythonNGSTools, accessed 16th August 2018). The two 631 

resulting VCFs contain the location of all SNPs relative to the representative genome (i.e. 632 

inclusive of those introduced in silico), and all inter-strain variants, respectively. We 633 

excluded from further analysis two strains with poor-quality strain-to-representative whole 634 

genome alignments, both calling < 10% of the strain-specific in silico SNPs (Supplementary 635 

Table 11). The proportion of in silico SNPs recovered by whole genome alignment is detailed 636 

in Supplementary Table 11 and is, in general, high: of the 254 whole genome alignments of 637 

non-representative to representative strains across the 10 species, 222 detect > 80% of the in 638 

silico SNPs and 83 detect > 90%. For the purposes of evaluating SNP calling pipelines when 639 

the reference genome differs from the reads, we are concerned only with calling the truth set 640 

of in silico SNPs and so discard inter-strain variants (see below). More formally, when using 641 
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each pipeline to align reads to a divergent genome, we are assessing the concordance of its 642 

set of SNP calls with the set of nucmer calls. However, it is possible that for a given call, one 643 

or more of the pipelines are correct and nucmer is incorrect. To reduce this possibility, a 644 

parallel set of whole genome alignments were made using Parsnp v1.2 with default 645 

parameters [57], with the exported SNPs contrasted with the nucmer VCF. 646 

 647 

Thus, when aligning to a divergent genome, the truth set of in silico SNPs (for which each 648 

pipeline is scored for true positives) are those calls independently identified by both nucmer 649 

and Parsnp. Similarly, the set of inter-strain positions are those calls made by one or both of 650 

nucmer and Parsnp. As we are not concerned with the correctness of these calls, the lack of 651 

agreement between the two tools is not considered further; rather, this establishes a set of 652 

ambiguous positions which are discarded when VCFs are parsed. 653 

 654 

Simulated SNP-containing genomes, sets of strain-to-representative genome SNP calls (made 655 

by both nucmer and Parsnp), and the final truth sets of SNPs are available in Supplementary 656 

Dataset 1 (hosted online via the Oxford Research Archive at 657 

http://dx.doi.org/10.5287/bodleian:AmNXrjYN8). 658 

 659 

Evaluating SNP calling pipelines using simulated data 660 

From each of 254 SNP-containing genomes, 3 sets of 150bp and 3 sets of 300bp paired-end 661 

were simulated using wgsim, a component of SAMtools v1.7 [21]. This requires an estimate 662 

of average insert size (the length of DNA between the adapter sequences), which in real data 663 

is often variable, being sensitive to the concentration of DNA used [109]. For read length x, 664 

we assumed an insert size of 2.2x, i.e. for 300bp reads, the insert size is 660bp (Illumina 665 

paired-end reads typically have an insert longer than the combined length of both reads 666 

[110]). The number of reads simulated from each genome is detailed in Supplementary Table 667 

3 and is equivalent to a mean 50-fold base-level coverage, i.e. (50 x genome length)/read 668 

length. 669 

 670 

Perfect (error-free) reads were simulated from each SNP-containing genome using wgsim 671 

parameters -e 0 -r 0 -R 0 -X 0 -A 0 (respectively, the sequencing error rate, mutation rate, 672 

fraction of indels, probability an indel is extended, and the fraction of ambiguous bases 673 

allowed). 674 

 675 



21 
 

Each set of reads was then aligned both to the genome of the same strain and to the 676 

representative genome of that species (from which the strain will diverge), with SNPs called 677 

using 41 different SNP calling pipelines (10 callers each paired with 4 aligners, plus the self-678 

contained Snippy). The programs used, including version numbers and sources, are detailed 679 

in Supplementary Table 1, with associated command lines in Supplementary Text 1. All 680 

pipelines were run using a high-performance cluster employing the Open Grid Scheduler 681 

batch system on Scientific Linux 7. No formal assessment was made of pipeline run time or 682 

memory usage. This was because given the number of simulations it was not tractable to 683 

benchmark run time using, for instance, a single core. The majority of programs in this study 684 

permit multithreading (all except the callers 16GT, GATK, Platypus, SNVer, and 685 

SNVSniffer) and so are in principle capable of running very rapidly. We did not seek to 686 

optimise each tool for any given species and so made only a minimum effort application of 687 

each pipeline, using default parameters and minimal VCF filtering (see below). This is so that 688 

we obtain the maximum possible number of true positives from each pipeline under 689 

reasonable use conditions. 690 

 691 

While each pipeline comprises one aligner and one caller, there are several ancillary steps 692 

common in all cases. After aligning reads to each reference genome, all BAM files were 693 

cleaned, sorted, had duplicate reads marked and were indexed using Picard Tools v2.17.11 694 

[111] CleanSam, SortSam, MarkDuplicates and BuildBamIndex, respectively. We did not 695 

add a post-processing step of local indel realignment (common in older evaluations, e.g., 696 

[12]) as this had negligible effect upon pipeline performance, with many variant callers 697 

(including GATK HaplotypeCaller and Freebayes) already incorporating a method of 698 

haplotype assembly (see Supplementary Text 1). 699 

 700 

Each pipeline produces a VCF as its final output. As with a previous evaluation [26], all 701 

VCFs were regularised using the vcfallelicprimitives module of vcflib v1.0.0-rc2 702 

(https://github.com/ekg/vcflib), so that different representations of the same indel or complex 703 

variant were not counted separately (these variants can otherwise be presented correctly in 704 

multiple ways). This module splits adjacent SNPs into individual SNPs, left-aligns indels and 705 

regularizes the representation of complex variants. The set of non-regularised VCFs cannot 706 

be meaningfully compared (see Supplementary Text 1). 707 

 708 
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Different variant callers populate their output VCFs with different contextual information. 709 

Before evaluating the performance of each pipeline, all regularised VCFs were subject to 710 

minimal parsing to retain only high-confidence variants. This is because many tools record 711 

variant sites even if they have a low probability of variation, under the reasonable expectation 712 

of parsing. Some pipelines tools (notably including Snippy and SNVer) apply their own 713 

internal set of VCF filtering criteria, giving the user the option of a ‘raw’ or ‘filtered’ VCF; in 714 

such cases, we retain the filtered VCF as the default recommendation. Where possible, 715 

(additional) filter criteria were applied as previously used by, and empirically selected for, 716 

COMPASS (Complete Pathogen Sequencing Solution; 717 

https://github.com/oxfordmmm/CompassCompact), an analytic pipeline employing Stampy 718 

and mpileup for base calling non-repetitive core genome sites (outlined in Supplementary 719 

Text 1 with filter criteria described in [112] and broadly similar to those recommended by a 720 

previous study for maximising SNP validation rate [113]). No set of generic VCF hard filters 721 

can be uniformly applied because each caller quantifies different metrics (such as the number 722 

of forward and reverse reads supporting a given call) and/or reports the outcome of a 723 

different set of statistical tests, making filtering suggestions on this basis. For instance, in 724 

particular circumstances, GATK suggests filtering on the basis of the fields ‘FS’, 725 

‘MQRankSum’ and ‘ReadPosRankSum’, which are unique to it (detailed at 726 

https://software.broadinstitute.org/gatk/documentation/article.php?id=6925, accessed 2nd 727 

April 2019). Where the relevant information was included in the VCF, SNPs were required to 728 

have (a) a minimum Phred score of 20, (b) ≥ 5 reads mapped at that position, (c) at least one 729 

read in each direction in support of the variant, and (d) ≥ 75% of reads supporting the 730 

alternative allele. These criteria were implemented with the ‘filter’ module of BCFtools v1.7 731 

[21] using parameters detailed in Supplementary Table 12. 732 

 733 

From these filtered VCFs, evaluation metrics were calculated as detailed below. 734 

 735 

Evaluating SNP calling pipelines using real sequencing data 736 

Parallel sets of 150 bp Illumina HiSeq 4000 paired-end short reads and ONT long reads were 737 

obtained from 16 environmentally-sourced samples from the REHAB project (‘the 738 

environmental REsistome: confluence of Human and Animal Biota in antibiotic resistance 739 

spread’; http://modmedmicro.nsms.ox.ac.uk/rehab/), as detailed in [61]: 4 Enterobacter spp., 740 

4 Klebsiella spp., 4 Citrobacter spp., and 4 Escherichia coli, with species identified using 741 

MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry, 742 
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plus sub-cultures of stocks of two reference strains K. pneumoniae subsp. pneumoniae MGH 743 

78578 and E. coli CFT073. Additional predictions were made using both the protein- and 744 

nucleotide-level classification tools Kaiju v1.6.1 [85] and Kraken2 v2.0.7 [114], respectively. 745 

Kaiju was used with two databases, one broad and one deep, both created on 5th February 746 

2019: ‘P’ (http://kaiju.binf.ku.dk/database/kaiju_db_progenomes_2019-02-05.tgz; > 20 747 

million bacterial and archaeal genomes from the compact, manually curated, EMBL 748 

proGenomes [115], supplemented by approximately 10,000 viral genomes from NCBI 749 

RefSeq [116]) and ‘E’ (http://kaiju.binf.ku.dk/database/kaiju_db_nr_euk_2019-02-05.tgz; > 750 

100 million bacterial, archaeal, viral and fungal genomes from NCBI nr, alongside various 751 

microbial eukaryotic taxa). Kaiju was run with parameters -e 5 and -E 0.05 which, 752 

respectively, allow 5 mismatches per read and filter results on the basis of an E-value 753 

threshold of 0.05. The read classifications from both databases were integrated using the 754 

Kaiju ‘mergeOutputs’ module, which adjudicates based on the lowest taxonomic rank of each 755 

pair of classifications, provided they are within the same lineage, else re-classifies the read at 756 

the lowest common taxonomic rank ancestral to the two. Kraken2 was run with default 757 

parameters using the MiniKraken2 v1 database 758 

(https://ccb.jhu.edu/software/kraken2/dl/minikraken2_v1_8GB.tgz, created 12th October 759 

2018), which was built from the complete set of NCBI RefSeq bacterial, archaeal and viral 760 

genomes. 761 

 762 

Hybrid assemblies were produced using methods detailed in [61] and briefly recapitulated 763 

here. Illumina reads were processed using COMPASS (see above). ONT reads were adapter-764 

trimmed using Porechop v0.2.2 (https://github.com/rrwick/Porechop) with default 765 

parameters, and then error-corrected and sub-sampled (preferentially selecting the longest 766 

reads) to 30-40x coverage using Canu v1.5 [117] with default parameters. Finally, Illumina-767 

ONT hybrid assemblies for each genome were generated using Unicycler v0.4.0 [54] with 768 

default parameters. The original study found high agreement between these assemblies and 769 

those produced using hybrid assembly with PacBio long reads rather than ONT, giving us 770 

high confidence in their robustness. 771 

 772 

In the simulated datasets, SNPs are introduced in silico into a genome, with reads containing 773 

these SNPs then simulated from it. With this dataset, however, there are no SNPs within each 774 

genome: we have only the short reads (that is, real output from an Illumina sequencer) and 775 
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the genome assembled from them (with which there is an expectation of near-perfect read 776 

mapping). 777 

 778 

To evaluate pipeline performance when the reads are aligned to a divergent genome, 779 

reference genomes were selected as representative of the predicted species, with distances 780 

between the two calculated using Mash v2.1 [58] and spanning approximately equal intervals 781 

from 0.01 to 0.12 (representative genomes and Mash distances are detailed in Supplementary 782 

Table 8). The truth set of SNPs between the representative genome and each hybrid assembly 783 

was the intersection of nucmer and Parsnp calls, as above. 784 

 785 

Samples, source locations, MALDI ID scores and associated species predictions are detailed 786 

in Supplementary Table 8. Raw sequencing data and assemblies have been deposited with the 787 

NCBI under BioProject accession PRJNA422511 788 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA422511), with the associated hybrid 789 

assemblies available via FigShare (https://doi.org/10.6084/m9.figshare.7649051). 790 

 791 

To allow both the replication and expansion of this evaluation using real sequencing data, a 792 

complete archive is available as Supplementary Dataset 2 (hosted online via the Oxford 793 

Research Archive at https://ora.ox.ac.uk/objects/uuid:8f902497-955e-4b84-9b85-794 

693ee0e4433e) comprising reads, assemblies, indexed reference genomes, the associated 795 

SNP call truth sets, VCFs, and a suite of Perl scripts. 796 

 797 

Evaluation metrics 798 

For each pipeline, we calculated the absolute number of true positive (TP; the variant is in the 799 

simulated genome and correctly called by the pipeline), false positive (FP; the pipeline calls a 800 

variant which is not in the simulated genome) and false negative SNP calls (FN; the variant is 801 

in the simulated genome but the pipeline does not call it). We did not calculate true negative 802 

calls for two reasons. Firstly, to do so requires a VCF containing calls for all sites, a function 803 

offered by some variant callers (such as mpileup) but not all. Secondly, when aligning reads 804 

to a divergent genome, a disproportionately large number of reference sites will be excluded, 805 

particularly in more diverse species (for example, gene numbers in N. gonorrhoeae differ by 806 

up to a third; see Supplementary Table 5). 807 

 808 
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We then calculated the precision (positive predictive value) of each pipeline as TP/(TP+FP), 809 

recall (sensitivity) as TP/(TP+FN), miss rate as FN/(TP+FN), and total number of errors 810 

(FP+FN) per million sequenced bases. We did not calculate specificity as this depends on 811 

true negative calls. We also calculated the F-score (as in [55]), which considers precision and 812 

recall with equal weight: F = 2 * ((precision * recall) / (precision + recall)). The F-score 813 

evaluates each pipeline as a single value bounded between 0 and 1 (perfect precision and 814 

recall). We also ranked each pipeline based on each metric so that – for example – the 815 

pipeline with the highest F-score, and the pipeline with the lowest number of false positives, 816 

would be rank 1 in their respective distributions. As an additional ‘overall performance’ 817 

measure, we calculated the sum of ranks for the 7 core evaluation metrics (the absolute 818 

numbers of TP, FP and FN calls, and the proportion-based precision, recall, F-score, and total 819 

error rate per million sequenced bases). Pipelines with a lower sum of ranks would, in 820 

general, have higher overall performance. 821 

 822 

We note that when SNPs are called after aligning reads from one strain to that of a divergent 823 

strain, the SNP calling pipeline will call positions for both the truth set of strain-specific in 824 

silico SNPs and any inter-strain variants. To allow a comparable evaluation of pipelines in 825 

this circumstance, inter-strain calls (obtained using nucmer and Parsnp; see above) are 826 

discarded and not explicitly considered either true positive, false positive or false negative. 827 

While the set of true SNPs when aligning to a divergent strain will be smaller than that when 828 

aligned to the same strain (because all SNPs are simulated in genic regions but not all genes 829 

are shared between strains), this will not affect proportion-based evaluation metrics, such as 830 

F-score. 831 

 832 

Effect size of differences in the F-score distribution between pipelines 833 

Differences between distributions are assessed by Mann Whitney U tests, with results 834 

interpreted using the non-parametric effect size estimator Cliff’s delta [59, 60], estimated at a 835 

confidence level of 95% using the R package effsize v0.7.1 [118]. Cliff’s delta employs the 836 

concept of dominance (which refers to the degree of overlap between distributions) and so is 837 

more robust when distributions are skewed. Estimates of delta are bound in the interval (-838 

1,1), with extreme values indicating a lack of overlap between groups (respectively, set 1 << 839 

set 2 and set 1 >> set 2). Distributions with |delta| < 0.147 are negligibly different, as in 840 

[119]. Conversely, distributions with |delta| >= 0.60 are considered to have large differences. 841 

 842 
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Tables 843 

 844 

Table 1. Summary of pipeline performance across all species’ genomes. 845 

 846 

Table 2. Overall performance of each pipeline per species, calculated as the sum of seven 847 

ranks, when reads are aligned to a divergent genome. 848 

The seven performance measures for each pipeline (the absolute numbers of true positive, 849 

false positive and false negative calls, and the proportion-based precision, recall, F-score, and 850 

total error rate per million sequenced bases) are detailed in Supplementary Table 6, with 851 

associated ranks in Supplementary Table 7. 852 

 853 

Figures 854 

 855 

Figure 1. Overview of SNP calling evaluation. 856 

SNPs were introduced in silico into 254 closed bacterial genomes (Supplementary Table 2) 857 

using Simulome. Reads were then simulated from these genomes. 41 SNP calling pipelines 858 

(Supplementary Table 1) were evaluated using two different genomes for read alignment: the 859 

original genome from which the reads were simulated and a divergent genome, the species-860 

representative NCBI ‘reference genome’. In the latter case, it will not be possible to recover 861 

all of the original in silico SNPs as some will be found only within genes unique to the 862 

original genome. Accordingly, to evaluate SNP calls, the coordinates of the original genome 863 

need to be converted to those of the representative genome. To do so, whole genome 864 

alignments were made using both nucmer and Parsnp, with consensus calls identified within 865 

one-to-one alignment blocks. Inter-strain SNPs (those not introduced in silico) are excluded. 866 

The remaining subset of in silico calls comprise the truth set for evaluation. There is a strong 867 

correlation between the total number of SNPs introduced in silico into the original genome 868 

and the total number of nucmer/Parsnp consensus SNPs in the divergent genome 869 

(Supplementary Figure 3). 870 

 871 

Figure 2. Median F-score per pipeline when the reference genome for alignment is (A) 872 

the same as the source of the reads, and (B) a representative genome for that species. 873 

Panels show the median F-score of 41 different pipelines when SNPs are called using error-874 

free 150bp and 300bp reads simulated from 254 genomes (of 10 species) at 50-fold coverage. 875 

Pipelines are ordered according to median F-score and coloured according to either the 876 
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variant caller (A) or aligner (B) in each pipeline. Note that because F-scores are uniformly > 877 

0.9 when the reference genome for alignment is the same as the source of the reads, the 878 

vertical axes on each panel have different scales. Genomes are detailed in Supplementary 879 

Table 2, summary statistics for each pipeline in Supplementary Tables 3 and 6, and 880 

performance ranks in Supplementary Tables 4 and 7, for alignments to the same or to a 881 

representative genome, respectively. 882 

 883 

Figure 3. Reduced performance of SNP calling pipelines with increasing genetic 884 

distance between the reads and the reference genome. 885 

Panel A shows that tThe median F-score across the complete set of 41 pipelines, per strain, 886 

decreases as the distance between the strain and the reference genome increases (assayed as 887 

the Mash distance, which is based on the proportion of k-mers shared between genomes). 888 

Each point indicates the median F-score, across all pipelines, for the genome of one strain per 889 

species (n = 254 strains). Points are coloured by the species of each strain (n = 10 species). 890 

Panel B shows the median F-score per pipeline per strain, with points coloured according to 891 

the variant caller in each pipeline. This shows that the performance of some SNP calling 892 

pipelines is more negatively affected by increasing distance from the reference genome. 893 

Summary statistics for each pipeline are shown in Supplementary Table 6, performance ranks 894 

in Supplementary Table 7 and the genetic distance between strains in Supplementary Table 2. 895 

Quantitatively similar results are seen if assaying distance as the total number of SNPs 896 

between the strain and representative genome, i.e. the set of strain-specific in silico SNPs 897 

plus inter-strain SNPs (Supplementary Figure 1). 898 

 899 

Figure 4. Stability of pipeline performance, in terms of F-score, with increasing genetic 900 

distance between the reads and the reference genome. 901 

The performance of a SNP calling pipeline decreases with increasing distance between the 902 

genome from which reads are sequenced and the reference genome to which they are aligned. 903 

Each point shows the median difference in F-score for a pipeline that calls SNPs when the 904 

reference genome is the same as the source of the reads, and when it is instead a 905 

representative genome for that species. Points are coloured according to the variant caller in 906 

each pipeline, with those towards the top of the figure less affected by distance. Lines fitted 907 

using LOESS smoothing. 908 

 909 
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Figure 5. Head-to-head performance comparison of three pipelines, on the basis of 910 

precision, recall and F-score. 911 

This figure directly compares the performance of three pipelines using simulated data: 912 

Snippy, Novoalign/mpileup and BWA/mpileup. Each point indicates the median F-score, 913 

precision or recall (columns 1 through 3, respectively), for the genome of one strain per 914 

species (n = 254 strains). Raw data for this figure is given in Supplementary Table 6. Text in 915 

the top left of each figure is an interpretation of the difference between each pair of 916 

distributions, obtained using the R package ‘effsize’ which applies the non-parametric effect 917 

size estimator Cliff’s delta to the results of a Mann Whitney U test. An expanded version of 918 

this figure, comparing 40 pipelines relative to Snippy, is given as Supplementary Figure 4. 919 

 920 

Figure 6. Similarity of performance for pipelines evaluated using both simulated and 921 

real sequencing data. 922 

Panel A shows that pipelines evaluated using real sequencing data show reduced performance 923 

with increasing Mash distances between the reads and the reference genome, similar to that 924 

observed with simulated data (see Figure 3A). Each point indicates the median F-score, 925 

across all pipelines, for the genome of an environmentally-sourced/reference isolate (detailed 926 

in Supplementary Table 8). Panel B shows that pipelines evaluated using real and simulated 927 

sequencing data have comparable accuracy. Each point shows the median precision of each 928 

of 41 pipelines, calculated across both a divergent set of 254 simulated genomes (2-36 strains 929 

from ten clinically common species) and 18 real genomes (isolates of Citrobacter, 930 

Enterobacter, Escherichia and Klebsiella). The outlier pipeline, with lowest precision on both 931 

real and simulated data, is Stampy/Freebayes. Raw data for this figure are available in 932 

Supplementary Tables 6 (simulated genomes) and 9 (real genomes). 933 

 934 

Figure 7. Median F-score per pipeline using real sequencing data, and when the 935 

reference genome for alignment can diverge considerably from the source of the reads. 936 

This figure shows the F-score distribution of 209 pipelines evaluated using real sequencing 937 

data sourced from the REHAB project and detailed in [61]. This dataset comprises 16 938 

environmentally-sourced Gram-negative isolates (all Enterobacteriaceae), and cultures of 939 

two reference strains (K. pneumoniae subsp. pneumoniae MGH 78578 and E. coli CFT073). 940 

For this figure, data from one outlier, E. coli isolate RHB11-C04, is excluded. Raw data for 941 

this figure is available as Supplementary Table 9, with summary statistics for each pipeline 942 

detailed in Supplementary Table 10. Genomes are detailed in Supplementary Table 8. 943 
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 944 

Supplementary Tables 945 

 946 

Supplementary Table 1. Sources of software. 947 

 948 

Supplementary Table 2. Genomes into which SNPs were introduced in silico, and various 949 

measures of distance between each strain’s genome and the representative genome of that 950 

species. 951 

 952 

Supplementary Table 3. Summary statistics of SNP calling pipelines after aligning reads to 953 

the same reference genome as their origin. 954 

 955 

Supplementary Table 4. Ranked performance of SNP calling pipelines after aligning reads 956 

to the same reference genome as their origin. 957 

 958 

Supplementary Table 5. Genome size diversity within 5 clinically common bacterial 959 

species. 960 

 961 

Supplementary Table 6. Summary statistics of SNP calling pipelines after aligning reads to 962 

a reference genome differing from their origin. 963 

 964 

Supplementary Table 7. Ranked performance of SNP calling pipelines after aligning reads 965 

to reference genome differing from their origin. 966 

 967 

Supplementary Table 8. Environmentally-sourced/reference Gram-negative isolates and 968 

associated representative genomes. 969 

 970 

Supplementary Table 9. Summary statistics of SNP calling pipelines after aligning real 971 

reads to a reference genome differing from their origin. 972 

 973 

Supplementary Table 10. Ranked performance of SNP calling pipelines after aligning real 974 

reads to reference genome differing from their origin. 975 

 976 
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Supplementary Table 11. Proportion of strain-specific in silico SNPs detected in whole 977 

genome alignments between the strain genome and a representative genome. 978 

 979 

Supplementary Table 12. VCF filtering parameters, as used by BCFtools. 980 

 981 

Supplementary Table 13. Summary statistics of SNP calling pipelines after aligning both 982 

error-free and error-containing reads to the same reference genome as their origin. 983 

 984 

Supplementary Table 14. Summary statistics of SNP calling pipelines after aligning both 985 

error-free and error-containing reads to a reference genome differing from their origin. 986 

 987 

Supplementary Table 15. Summary statistics of SNP calling pipelines after aligning error-988 

free reads to a reference genome differing from their origin, both with and without local indel 989 

realignment. 990 

 991 

Supplementary Table 16. Summary statistics of E. coli SNP calling pipelines after aligning 992 

error-free reads to a reference genome differing from their origin, both with and without VCF 993 

regularisation. 994 

 995 

Supplementary Table 17. Summary statistics of E. coli SNP calling pipelines after aligning 996 

error-free reads to a reference genome differing from their origin, at 5-, 10-, 25- and 50-fold 997 

depths of coverage. 998 

 999 

 1000 

Supplementary Figures 1001 

 1002 

Supplementary Figure 1. Reduced performance of SNP calling pipelines with increasing 1003 

genetic distance between the reads and the reference genome (assayed as total number 1004 

of SNPs). 1005 

The median F-score across a set of 41 pipelines, per strain, decreases as the distance between 1006 

the strain and the reference genome increases (assayed as the total number of SNPs between 1007 

the strain and representative genome, i.e. the set of strain-specific in silico SNPs plus inter-1008 

strain SNPs). Each point indicates the genome of one strain per species (n = 254 strains). 1009 

Points are coloured by the species of each strain (n = 10 species). Summary statistics for each 1010 
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pipeline are shown in Supplementary Table 6, performance ranks in Supplementary Table 7 1011 

and the genetic distance between strains in Supplementary Table 2. Quantitatively similar 1012 

results are seen if assaying distance as the Mash distance, which is based on the proportion of 1013 

k-mers shared between genomes (Figure 3A). 1014 

 1015 

Supplementary Figure 2. Decreasing sensitivity (that is, an increased number of false 1016 

negative calls) with increasing genetic distance between the reads and the reference 1017 

genome (assayed as Mash distance). 1018 

The median sensitivity (recall) across a set of 41 pipelines, per strain, increases as the 1019 

distance between the strain and the reference genome increases (assayed as the Mash 1020 

distance, which is based on the proportion of shared k-mers between genomes). Each point 1021 

indicates the genome of one strain per species (n = 254 strains). Points are coloured by the 1022 

species of each strain (n = 10 species). Summary statistics for each pipeline are shown in 1023 

Supplementary Table 6, performance ranks in Supplementary Table 7 and the genetic 1024 

distance between strains in Supplementary Table 2. 1025 

 1026 

Supplementary Figure 3. Total number of SNPs it is possible to call should reads from 1027 

one strain be aligned to a representative genome of that species. 1028 

Strong correlation between the total number of SNPs introduced in silico into one genome 1029 

and the maximum number of SNPs it is possible to call assuming reads from the former are 1030 

aligned to a representative genome of that species (which will not necessarily contain the 1031 

same complement of genes). Each point represents the genome of one strain, with genomes 1032 

detailed in Supplementary Table 2. The line y = x is shown in red. 1033 

  1034 

Supplementary Figure 4. Head-to-head performance comparison of all pipelines relative 1035 

to Snippy, on the basis of F-score. 1036 

This figure directly compares the performance, using simulated data, of 40 pipelines relative 1037 

to Snippy. Each point indicates the median F-score for the genome of one strain per species 1038 

(n = 254 strains). Data for Snippy is plotted on the x-axis, and for the named pipeline on the 1039 

y-axis. Raw data for this figure is given in Supplementary Table 6. Text in the top left of each 1040 

figure is an interpretation of the difference between each pair of distributions, obtained using 1041 

the R package ‘effsize’ which applies the non-parametric effect size estimator Cliff’s delta to 1042 

the results of a Mann Whitney U test. 1043 

 1044 
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Supplementary Figure 5. Selection of E. coli isolates by manual review of dendrogram 1045 

topology. 1046 

There are numerous usable complete genomes for E. coli. For the SNP calling evaluation, a 1047 

subset of isolates was selected (indicated in red boxes) so as to maximise the diversity of 1048 

clades represented. To do so, an all-against-all distance matrix for each genome was created 1049 

using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed using the 1050 

neighbour joining method implemented in MEGA v7.0.14. Sources for the selected genomes 1051 

are given in Supplementary Table 2. 1052 

 1053 

Supplementary Figure 6. Selection of K. pneumoniae isolates by manual review of 1054 

dendrogram topology. 1055 

There are numerous usable complete genomes for K. pneumoniae. For the SNP calling 1056 

evaluation, a subset of isolates was selected (indicated in red boxes) so as to maximise the 1057 

diversity of clades represented. To do so, an all-against-all distance matrix for each genome 1058 

was created using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed 1059 

using the neighbour joining method implemented in MEGA v7.0.14. Sources for the selected 1060 

genomes are given in Supplementary Table 2. 1061 

 1062 

Supplementary Figure 7. Selection of L. monocytogenes isolates by manual review of 1063 

dendrogram topology. 1064 

There are numerous usable complete genomes for L. monocytogenes. For the SNP calling 1065 

evaluation, a subset of isolates was selected (indicated in red boxes) so as to maximise the 1066 

diversity of clades represented. To do so, an all-against-all distance matrix for each genome 1067 

was created using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed 1068 

using the neighbour joining method implemented in MEGA v7.0.14. Sources for the selected 1069 

genomes are given in Supplementary Table 2. 1070 

 1071 

Supplementary Figure 8. Selection of S. enterica isolates by manual review of 1072 

dendrogram topology. 1073 

There are numerous usable complete genomes for S. enterica. For the SNP calling evaluation, 1074 

a subset of isolates was selected (indicated in red boxes) so as to maximise the diversity of 1075 

clades represented. To do so, an all-against-all distance matrix for each genome was created 1076 

using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed using the 1077 
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neighbour joining method implemented in MEGA v7.0.14. Sources for the selected genomes 1078 

are given in Supplementary Table 2. 1079 

 1080 

Supplementary Figure 9. Selection of S. aureus isolates by manual review of 1081 

dendrogram topology. 1082 

There are numerous usable complete genomes for S. aureus. For the SNP calling evaluation, 1083 

a subset of isolates was selected (indicated in red boxes) so as to maximise the diversity of 1084 

clades represented. To do so, an all-against-all distance matrix for each genome was created 1085 

using the ‘triangle’ component of Mash v2.1, with a dendrogram constructed using the 1086 

neighbour joining method implemented in MEGA v7.0.14. Sources for the selected genomes 1087 

are given in Supplementary Table 2. 1088 

 1089 

Supplementary Datasets 1090 

 1091 

Supplementary Dataset 1. Simulated datasets for evaluating bacterial SNP calling 1092 

pipelines. 1093 

This archive contains the set of 254 SNP-containing genomes, VCFs containing the nucmer 1094 

and Parsnp strain-to-representative genome SNP calls, and the final truth sets of SNPs used 1095 

for evaluation. 1096 

 1097 

Supplementary Dataset 2. Real sequencing datasets for evaluating bacterial SNP calling 1098 

pipelines. 1099 

This is a complete archive to facilitate both the replication and expansion of this evaluation 1100 

using real (REHAB project) sequencing data. It comprises 18 sets of paired-end reads and 1101 

assemblies, the associated indexed reference genomes, SNP call truth sets, VCFs, and a suite 1102 

of Perl scripts. 1103 

 1104 
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Table 1. Summary of pipeline performance across all species' genomes.

Recall (sensitivity)

No. of true positive calls

No. of false positive calls

No. of false negative calls

Total no. of errors (FP + FN calls) per million sequenced bases

Sum of ranks for all previous measures

Numbers in parentheses refer to the median value, across all simulations, for each performance measure.

Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.

Performance measure

Precision (specificity)

F-score
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Table 1. Summary of pipeline performance across all species' genomes.

bwa-mem/novoalign/stampy with gatk (0.989)

novoalign/gatk (15,777)

stampy with mpileup/platypus (0.000)

novoalign/gatk (0.941)

novoalign/gatk (0.944)

novoalign/gatk (10)

Numbers in parentheses refer to the median value, across all simulations, for each performance measure.

Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.

Top ranked pipeline(s) (when the reference genome 

is the same as the source of the reads)

snippy, bwa-mem/minimap2/novoalign/stampy with 

16GT/freebayes/gatk/lofreq/mpileup/platypus/snver

/strelka/varscan (1.000)

bwa-mem with freebayes/gatk, minimap2 with 

freebayes/gatk, novoalign/gatk, stampy/gatk (0.994)



bwa-mem with 16GT/freebayes, stampy/freebayes (0.997)

bwa-mem/freebayes (13,829)

novoalign/snvsniffer (1.825)

bwa-mem/freebayes (0.188)

snippy (2.627) *

snippy (20) *

Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.

Top ranked pipeline(s) (when the reference genome is divergent 

from the reads)

novoalign/snvsniffer (0.971)

snippy (0.982) *



bwa-mem/minimap2/stampy with freebayes (0.992)

bwa-mem/freebayes (14,791)

novoalign/snvsniffer (0.913)

bwa-mem/freebayes (0.641)

snippy (2.125)

novoalign/mpileup (42)

Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.

Top ranked pipeline(s) (averaged across all simulations)

novoalign/snvsniffer (0.986)

novoalign with lofreq/mpileup, snippy (0.986)



Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.



Snippy is based upon a BWA-mem/freebayes pipeline, although under default parameters shows improved performance. When the reference genome diverges from the reads and compared to the rank 1 position of Snippy, BWA-mem/freebayes has a median F-score of 0.965 (ranking 12 out of 41 pipelines), a median number of errors per million sequenced bases of 5.265 (ranking 26 out of 41 pipelines), and a sum of ranks of 98.



Table 2. Overall performance of each pipeline per species, calculated as the sum of seven ranks, when reads are aligned to a divergent genome.

snippy * 2 1 1 1

novoalign/lofreq 1 2 3 10

novoalign/mpileup 3 3 4 9

novoalign/16GT 5 5 6 8

novoalign/snver 4 4 5 12

minimap2/mpileup 10 6 2 20

novoalign/strelka 6 9 13 7

bwa-mem/mpileup 12 14 15 2

minimap2/strelka 8 11 10 21

bwa-mem/snver 9 10 11 5

minimap2/lofreq 20 8 7 18

novoalign/freebayes 7 13 12 14

bwa-mem/16GT 22 18 20 6

bwa-mem/strelka 16 25 22 4

bwa-mem/lofreq 18 16 19 3

minimap2/freebayes 14 12 9 15

minimap2/16GT 21 15 14 16

minimap2/snver 11 7 8 25

bwa-mem/freebayes * 15 17 16 13

novoalign/varscan 13 19 17 17

bwa-mem/varscan 17 24 21 11

bwa-mem/platypus 31 23 25 19

stampy/strelka 24 27 27 22

minimap2/varscan 19 21 18 29

novoalign/platypus 29 20 23 23

minimap2/platypus 23 22 24 34

stampy/freebayes 26 26 26 24

bwa-mem/gatk 27 28 32 26

stampy/mpileup 36 32 29 28

novoalign/gatk 28 29 31 27

stampy/lofreq 37 33 30 30

minimap2/gatk 25 31 33 33

stampy/gatk 34 34 35 31

stampy/platypus 38 35 39 35

novoalign/snvsniffer 33 30 28 32

stampy/snver 30 39 34 41

bwa-mem/snvsniffer 32 36 36 38

stampy/16GT 40 38 37 37

stampy/varscan 41 40 38 39

minimap2/snvsniffer 35 37 40 40

stampy/snvsniffer 39 41 41 36

* Snippy is based upon a BWA-mem/freebayes pipeline but under default parameters, shows improved performance.

Pipeline
Clostridiodes 

difficile

Escherichia 

coli

Klebsiella 

pneumoniae

Listeria 

monocytogenes
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Table 2. Overall performance of each pipeline per species, calculated as the sum of seven ranks, when reads are aligned to a divergent genome.

5 1 1 2 1 1

3 4 2 1 3 2

2 10 5 4 2 3

8 12 3 18 6 6

12 14 4 14 4 10

9 13 9 9 7 15

13 27 8 11 11 4

7 8 19 17 8 9

15 6 11 12 10 7

21 2 10 21 14 12

10 17 18 3 9 14

1 22 6 24 18 17

19 15 17 5 13 8

16 5 26 7 17 5

11 20 24 19 5 11

4 25 7 23 19 18

18 18 16 6 12 13

22 3 12 26 15 22

6 19 13 16 21 16

20 16 15 13 16 21

30 9 23 29 23 23

36 7 22 10 24 20

25 11 32 15 20 19

32 26 21 31 22 25

28 32 14 25 30 27

34 21 20 22 25 29

33 30 29 30 26 24

26 31 28 28 27 26

14 23 35 27 31 30

23 34 25 34 28 31

17 29 37 20 32 32

24 35 27 35 34 28

27 37 30 32 33 34

37 24 33 8 41 39

38 33 31 38 36 33

29 28 40 37 38 35

39 39 34 39 29 38

35 36 39 33 39 36

31 38 41 36 40 37

40 40 36 40 35 40

41 41 38 41 37 41

* Snippy is based upon a BWA-mem/freebayes pipeline but under default parameters, shows improved performance.

Mycobacterium 

tuberculosis

Neisseria 

gonorrhoea

Salmonella 

enterica

Shigella 

dysenteriae

Staphylococcus 

aureus

Streptococcus 

pneumoniae
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